PP53B-2327
Unraveling Vital Effects: Photosynthesis of Symbiotic Algae in Foraminifera Hosts
Abstract:
B/Ca and boron isotope proxies recorded in the calcium carbonate shells of planktic foraminifera are sensitive to seawater acidity. We seek to understand how the biology of the organism affects the geochemical signals, as planktic foraminifera shells differ in their chemical composition from inorganic calcite and also between foraminifer species. These differences are most likely related to physiological processes like respiration, calcification, and photosynthesis in symbiont-bearing foraminifera. The modifications of geochemical signals by these biological parameters are termed vital effects.Our study is based on the hypothesis that the B/Ca and δ11B offsets observed in planktic foraminifer shells are primarily due to the photosynthetic activity of their symbionts, which may elevate the microenvironmental pH to different degrees in different foraminifer species. Using fast repetition rate fluorometry, chlorophyll α analyses and symbiont counts, we investigated the symbiont-photosynthetic activity associated with three foraminifera species – Globigerinoides ruber, G. sacculifer, and Orbulina universa. Boron proxy systematics in these species suggest that photosynthetic activity should be greater in G. ruber compared to G. sacculifer and O. universa, but this is not confirmed by our study. While symbiont photosynthesis undoubtedly explains microenvironmental pH-elevation and boron proxy systematics in symbiont-bearing compared to symbiont-barren foraminifer species, additional processes must be responsible for the boron geochemical offsets between symbiont-bearing species. Respiration of the symbiont-host association and the calcification process are most likely candidates that require further analysis. Our study highlights the potential danger of misinterpreting geochemical signals in biological organisms when the biology of the organism in question is not entirely understood.