B41E-0479
Predicting Species-environment Relationships with Functional Traits for the Understory Flora of Wisconsin

Thursday, 17 December 2015
Poster Hall (Moscone South)
Jeremy Ash, University of Wisconsin-Madison, Botany, Madison, WI, United States
Abstract:
Understanding the processes that structure species' abundance patterns is a central problem in ecology, both for explaining current species' distributions and predicting future changes. Environmental gradients affect species' distribution patterns with these responses likely depending on species' functional traits. Thus, tracking shifts in species' traits can provide insight into the mechanisms by which species respond to dynamic environmental conditions. We examined how functional traits are associated with long-term changes in the distribution and abundance of understory plants in Wisconsin forests over the last 50+ years. We relied on detailed surveys and resurveys of the same Wisconsin forest plots, data on 12 functional traits, and site-level environmental variables including soil and climate conditions. We then related changes in the abundance of 293 species across a network of 249 sites to these environmental variables and explored whether functional traits served to predict these relationships using multilevel models. Species abundance patterns were strongly related to variation in environmental conditions among sites, but species appear to be responding to distinct sets of environmental variables. Functional traits only weakly predicted these species-environment relationships, limiting our ability to generalize these results to other systems. Nonetheless, understanding how traits interact with environmental gradients to structure species distribution patterns helps us to disentangle the drivers of ecological change across diverse landscapes.