S21E-08
Effect of Subducting Slabs in Global Shear Wave Tomography
Tuesday, 15 December 2015: 09:45
307 (Moscone South)
Chang Lu and Stephen P Grand, University of Texas at Austin, Jackson School of Geosciences, Austin, TX, United States
Abstract:
Subducting slabs represent strong short wavelength seismic anomalies in the upper mantle where much of Earth’s seismicity is located. As such, they have the potential to bias longer wavelength seismic tomography models. To evaluate the effect of subducting slabs in global tomography, we performed a series of inversion tests using a global synthetic shear wave travel time dataset for a theoretical slab model based on predicted thermal anomalies within slabs. The spectral element method (SEM) was applied to predict the travel time anomalies produced by the 3D slab model for paths corresponding to our current data used in actual tomography models. Inversion tests have been conducted first using the raw travel time anomalies to check how well the slabs can be imaged in global tomography without the effect of mislocation. Our results indicate that most of the slabs can be identified in the inversion result but with smoothed and reduced amplitude. The recovery of the total mass anomaly in slab regions is about 84%. We then performed another inversion test to investigate the effect of mislocation caused by subducting slabs. We found that source mislocation significantly degrades the imaging of subducting slabs – potentially reducimg the recovery of mass anomalies in slab regions to only 39%. We tested two source relocation procedures – an iterative relocation inversion and joint relocation inversion. Both methods partially recover the true source locations and improve the inversion results, but the joint inversion method worked significantly better than the iterative method. In all of our inversion tests, the amplitude of artifact structures in the lower mantle caused by the incorrect imaging of slabs (up to ~0.5% S velocity anomalies) are comparable to large scale lower mantle heterogeneities seen in global tomography studies.