SM41E-2520
Determining the Effects of EMIC Waves on Precipitating MeV Electrons during Strom Main Phases
Thursday, 17 December 2015
Poster Hall (Moscone South)
Yue Chen, LANL, Los Alamos, NM, United States
Abstract:
Theoretic studies have suggested that electromagnetic ion cyclotron (EMIC) waves can cause significant precipitation of ~MeV electrons, supposedly accounting for the fast dropouts of outer-belt electrons during storm main phases. Usually the resonance between left-hand polarized EMIC with electrons with moderate energy is unlikely due to their opposite polarizations, while resonance with highly relativistic electrons do occur and cause electrons to precipitate into the atmosphere through pitch-angle scattering. Several previous studies on observations find a close relation between the two phenomena, e.g., Cliverd et al. [2007], Sandanger et al. [2007], and Miyoshi et al. [2008], while others find otherwise, e.g., Meredith et al. [2011]; recently, more observational evidence supporting the connection has been reported (e.g., Li et al. [2014] and Blum et al. [2015]). However, whether and under what favoring conditions EMIC waves cause rapid dropouts of relativistic electrons during storm main phases remain unresolved questions. Here, using latest wave and electron data from multiple missions including Van Allen Probes, BARREL, and NOAA POES, we systemically examine the relation between EMIC waves and MeV electron precipitation. We first construct two independent event lists for intensified EMIC waves and enhancements of MeV electron precipitation, respectively. Then we cross check the two lists to identify if any significant correlation exists in between, and further characterize the wave effectiveness in terms of L-shell, MLT, resonance energy, as well as the background plasma conditions. Results from this study will advance our knowledge about the loss mechanism of outer-belt electrons, thus laying down another stepping stone towards high-fidelity physics-based models for radiation belts.