V43B-3134
Double-Difference Earthquake Locations Using imaging Magma Under St. Helens (iMUSH) Data
Thursday, 17 December 2015
Poster Hall (Moscone South)
Mitchell Christian Blair Williams, University of California Santa Cruz, Santa Cruz, CA, United States, Carl W Ulberg, University of Washington Seattle Campus, Seattle, WA, United States and Kenneth C Creager, Applied Physics Laboratory University of Washington, Seattle, WA, United States
Abstract:
The imaging Magma Under St. Helens (iMUSH) project deployed a magnetotelluric survey, high-resolution active-source experiment, two-year passive-source experiment, and gathered geochemical-petrological data to better understand the magmatic architecture of Mount St. Helens. A primary goal of the passive source experiment is to create 3-D P-wave and S-wave velocity models under the volcano from the surface to the slab. We use hypoDD, a double-difference algorithm, to gain high-precision relative earthquake locations for several hundred events within tens of kilometers of the Mount St. Helens crater. We use data from the first half (2014 June- 2015 July) of the two-year passive-source component of the iMUSH array recording six hundred useable earthquakes with a high-event density near the volcanic crater. The array includes seventy evenly-spaced broadband seismometers continuously sampling at 50 Hz within a 50 km radius of Mount St. Helens, and is augmented by dozens of permanent network stations. Precise relative earthquake locations are determined for spatially clustered hypocenters using a combination of hand picked P-wave arrivals and high-precision relative times determined by cross correlation of waveforms recorded at a common station for event pairs using a 1-D velocity structure. These high-quality relative times will be used to help constrain seismic tomography models as well. We will interrupt earthquake clusters in the context of emerging 3-D wave-speed models from the active-source and passive-source observations. We are examining the relationship between hypocentral locations and regions of partial melt, as well as the relationship between hypocentral locations and the NNW-SSE trending Saint Helens seismic Zone.