GP23C-06
Magnetotelluric imaging of the subducting slab in Cascadia with constraints from seismology

Tuesday, 15 December 2015: 14:40
300 (Moscone South)
Bo Yang, China University of Geosciences Wuhan, Wuhan, China, Gary D Egbert, Oregon State University, Corvallis, OR, United States, Anna Kelbert, USGS Central Region Offices Denver, Denver, CO, United States and Eugene Humphreys, University of Oregon, Eugene, OR, United States
Abstract:
We present results from three-dimensional (3D) inversion of long-period magnetotelluric (MT) data from Cascadia, using seismological constraints on plate geometry and back-arc structure, to refine 3D images of electrical resistivity across this subduction zone. For this study we employed the impedances and vertical transfer functions from 144 sites from the EarthScope Transportable Array, along with data from previous higher density MT profiles from Cascadia (EMSLAB, CAFE-MT etc.). Morphological parameters for the subducting Juan de Fuca and Gorda plates (e.g. upper boundary and thickness) were extracted from McCrory et al (2012) and Schmandt and Humphreys (2010) seismological models and used to define a resistive subducting slab structure in 3D. This was then either used as a prior model, or fixed (both resistivity and geometry) during the MT inversion. By imposing constraints on the geometry of the slab (which is otherwise imaged as an amorphous broad resistive zone) we improve recovery and resolution of subduction related conductivity features. The constrained inversions also allowed us to test sensitivity of the MT data to variants on slab geometry, such as the proposed slab “tear” near the Oregon-Washington border suggested by some seismic tomography models, and to explore consistency of the MT data with seismic models, which suggest segmentation of back-arc upwelling. Three zones of substantially reduced resistivity were found, all exhibiting significant along-strike variability. In the forearc, an N-S stripe of high conductivity (10 ohm-m or less) was found just above the plate interface, near the tip of the mantle wedge. This conductive feature is spatially coincident with mapped locations of episodic tremor and slip, and likely represents aqueous fluids associated with slab dehydration. To the east, a second, clearly separated, N-S elongate zone of similarly high conductivity occurs in the mid-lower crust and upper mantle beneath the modern arc, again likely representing fluids, and in some cases melt. Finally, in the back-arc a broader, and generally more subdued (20-30 ohm-m), zone of reduced resistivity occurs in the North American mantle above the plate interface.