DI21A-2588
Shear Wave Splitting Observations Beneath Uturuncu Volcano, Bolivia

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Nealey Elizabeth Sims1, Douglas H Christensen2 and Melissa M Moore-Driskell1, (1)University of North Alabama, Florence, AL, United States, (2)University of Alaska Fairbanks, Fairbanks, AK, United States
Abstract:
Anisotropy in the upper mantle is often associated with mantle flow direction through the lattice preferred orientation of anisotropic minerals such as olivine in the upper mantle material. The flow of the mantle around subduction zones can be particularly complex, and thus difficult to explain. Because of its relationship to anisotropy, analysis of shear wave splitting measurements can help to answer questions regarding the upper mantle flow that surrounds subducting slabs. Here we present SK(K)S shear wave splitting measurements from a temporary broadband network (PLUTONS) of 33 stations deployed from April 2009 to October 2012 on the Altiplano plateau around Uturuncu volcano in Bolivia. The stations are spaced 10-20 km apart, providing a high spatial resolution of the region of the mantle directly below Uturuncu volcano. Despite the lack of numerous splitting results to analyze, preliminary measurements indicate a relatively consistent pattern of fast-polarization directions in a NW-SE orientation of about N80ºW. We think that it is likely that these observations come from anisotropy in the mantle wedge above the subducting Nazca plate indicating a direction of flow in the mantle wedge that is sub-parallel to the subduction direction of the Nazca plate. Although W-E flow beneath the subducting Nazca plate cannot be completely ruled out, these results appear to be consistent with the simple model of two-dimensional corner flow in the mantle wedge and slab-entrained mantle flow beneath the slab.