GP13B-1303
2D Forward Modeling of Gravity Data Using Geostatistically Generated Subsurface Density Variations

Monday, 14 December 2015
Poster Hall (Moscone South)
Geoffrey A Phelps, Organization Not Listed, Washington, DC, United States
Abstract:
Two-dimensional (2D) forward models of synthetic gravity anomalies are calculated and compared to observed gravity anomalies using geostatistical models of density variations in the subsurface, constrained by geologic data. These models have an advantage over forward gravity models generated using polygonal bodies of homogeneous density because the homogeneous density restriction is relaxed, allowing density variations internal to geologic bodies to be considered. By discretizing the subsurface and calculating the cumulative gravitational effect of each cell, multiple forward models can be generated for a given geologic body, which expands the exploration of the solution space. Furthermore, the stochastic models can be designed to match the observed statistical properties of the internal densities of the geologic units being modeled. The results of such stochastically generated forward gravity models can then be compared with the observed data.

To test this modeling approach, we compared stochastic forward gravity models of 2D geologic cross-sections to gravity data collected along a profile across the Vaca Fault near Fairfield, California. Three conceptual geologic models were created, each representing a distinct fault block scenario (normal, strike-slip, reverse) with four rock units in each model. Using fixed rock unit boundaries, the units were populated with geostatistically generated density values, characterized by their respective histogram and vertical variogram. The horizontal variogram could not be estimated because of lack of data, and was therefore left as a free parameter. Each fault block model had multiple geostatistical realizations of density associated with it. Forward models of gravity were then generated from the fault block model realizations, and rejection sampling was used to determine viable fault block density models. Given the constraints on subsurface density, the normal and strike-slip fault model were the most likely.