PP23A-2288
The Global Warming Hiatus Tied to the North Atlantic Oscillation and Its Prediction

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Cheng Sun and Jianping Li, Beijing Normal University, Beijing, China
Abstract:
The twentieth century Northern Hemisphere mean surface temperature (NHT) is characterized by a multidecadal warming-cooling-warming pattern followed by a flat trend since about 2000 (recent warming hiatus). Here we demonstrate that the multidcadal variability in NHT including the recent warming hiatus is tied to the North Atlantic Oscillation (NAO) and the NAO is implicated as a useful predictor of NHT multidecadal variability. Observational analysis shows that the NAO leads both the detrended NHT and oceanic Atlantic Multidecadal Oscillation (AMO) by 15–20 years. Theoretical analysis illuminates that the NAO precedes NHT multidecadal variability through its delayed effect on the AMO due to the large thermal inertia associated with slow oceanic processes.

The CCSM4 model is employed to investigate possible physical mechanisms. The positive NAO forces the strengthening of the Atlantic meridional overturning circulation (AMOC) and induces a basin-wide uniform sea surface temperature (SST) warming that corresponds to the AMO. The SST field exhibits a delayed response to the preceding enhanced AMOC, and shows a pattern similar to the North Atlantic tripole (NAT), with SST warming in the northern North Atlantic and cooling in the southern part. This SST pattern (negative NAT phase) may lead to an atmospheric response that resembles the negative NAO phase, and subsequently the oscillation proceeds, but in the opposite sense. Based on these mechanisms, a simple delayed oscillator model is established to explain the quasi-periodic multidecadal variability of the NAO. The magnitude of the NAO forcing of the AMOC/AMO and the time delay of the AMOC/AMO feedback are two key parameters of the delayed oscillator. For a given set of parameters, the quasi 60-year cycle of the NAO can be well predicted. This delayed oscillator model is useful for understanding of the oscillatory mechanism of the NAO, which has potential for decadal predictions as well as the interpretation of proxy data records.

An NAO-based linear model is therefore established to predict the NHT, which gives an excellent hindcast for NHT in 1971–2011 with the recent flat trend well predicted. NHT in 2012–2027 is predicted to fall slightly over the next decades, due to the recent NAO decadal weakening that temporarily offsets the anthropogenically induced warming.