OS23B-2006
Origins and Driving Mechanisms for Shallow Methane Accumulations on the Svyatogor Ridge, Fram Strait

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Kate Alyse Waghorn1, Stefan Bunz1, Andreia Aletia Plaza-Faverola1, Ingvild M Westvig1 and Joel E Johnson1,2, (1)University of Tromsø, Centre for Arctic Gas Hydrates, Environment and Climate (CAGE), Tromsø, Norway, (2)University of New Hampshire, Dept. of Earth Sciences, Durham, NH, United States
Abstract:
The Svyatogor Ridge, located west of the Knipovich Spreading Ridge (KR) and south of the Molloy Transform Fault (MTF), is hypothesized to have once been the south tip of Vestnesa Ridge; a large sediment drift that was offset during the last 2 Ma along the MTF. The sedimentary cover across Svyatogor Ridge is limited, compared to Vestnesa Ridge, and basement outcrops are identified ~850 mbsf on the apex of the ridge. Despite the limited sedimentation, and its unique location at the intersection between the KR and MTF, Svyatogor Ridge has evidence of shallow gas accumulations; a strong BSR indicating a gas hydrate and underlying free gas system, and fluid flow pathways to the seafloor culminating in pockmarks. Using a high-resolution P-Cable 3D seismic survey, 2D seismic, and multibeam bathymetry data, we investigate how tectonic and sedimentary regimes have influenced the formation of a well-developed gas hydrate system. Sedimentation related with the Vestnesa drift on Svyatogor Ridge is interpreted to have begun ~2-3 Ma. The young age of the underlying oceanic crust, and subsequent synrift sediments below drift strata, suggests gas production from early Miocene aged hydrocarbon source identified in ODP Site 909 to the west, is unlikely in this region. Additionally, given the ultra-slow, magma limited spreading regime of the KR, we do not expect significant thermogenic methane generation from shallow magmatic sources. Therefore, in addition to some microbial gas production, Johnson et al. (2015) hypothesize a contribution from an abiotic source may explain the well-developed gas hydrate system. Large-scale basement faults identified in the seismic data are interpreted as detachment faults, which have exhumed relatively young ultramafic rocks. These detachment faults act as conduits for fluid flow, allowing circulation of seawater to drive serpentinization and subsequently act as pathways for fluids and abiotic methane to reach the shallow subsurface. This work aims to constrain the sedimentary and tectonic history of Svyatogor Ridge to determine 1) the relative interactions between basement detachment faults and overlying faults in the sedimentary cover, 2) the potential role of these faults as gas/fluid conduits and 3) how the underlying structural evolution has influenced the evolution of the gas hydrate system.