T21A-2807
Kinematic Evolution of fold-and-thrust Belts in the Yubei Area: Implications for the Tectonic Events of Ordovician at the Southern Tarim Basin

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Yiqiong Zhang, The Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, China University of Geosciences, Beijing, Beijing, China
Abstract:
As a response to tecto-orogenic processes of the South Altun and the West Kunlun (Monlar P, 1975; He Bizhu, 2011), early Paleozoic tectonic evolution of the southern Tarim craton was distinctively one of the extensions and was followed by compression (Morris W.Leighton, 1990; Gao Zhiqian, 2015). From the late Ordovician, the Yubei area developed distinctively NE-SW trending fold-and-thrust belts in rows which were eroded and deformed through multiphase tectonic movement (Dengfa He, 2007), with similarities and dissimilarities between each other rows in many aspects, at the Southern Tarim inner basin (Fig. 1). The northern of Hetian paleo-uplift and the northwestern of NE-trending folds zone on Caledonian in Tangguzibasi depression should be favorable to the potential exploration area for the first large-scale period of hydrocarbon migration and accumulation (Brown LF, 1979).

In this contribution, based on geophysical log, core and 2D/3D seismic data, we constructed its tectonic geometry morphology, controlled by detailed chronostratigraphic framework. According to the fault-related fold theory, rows of asymmetric fault-propagation folds grew in the Yubei area during the late Caledonian period, with the evidence of interpreted growth strata from the high resolution 3D seismic data (Suppe J et al., 1990). That intercontinental tecto-orogenic events from southern Tarim basin, leading to the transformation of its margins, affected inner basin at that time, modified the basin into the Tarim metacraton (Jean-Paul Liégeois, 2013; Zieglar P.A., 1998). Correlating the four tectonic groups of the identified with the axis variation of strata and fold amplitude distribution showed that fault evolution progressed in several superimposed stages: Precambrian, late Ordovician to early Carboniferous (Zhao Zongju, 2009), Carboniferous to Permian, Cenozoic. Analyzing the sedimentary development and structure evolution,the tectonic paleo-geographic setting is reconstructed, providing processes that govern the mechanism of this backbreak fold-and-thrust belts worldwide.

Most importantly, detailed mapping of marker deflections in the hanging wall at top Ordovician in the Yubei area could help to constrain equivalent structures in the footwall, which may represent potential hydrocarbon traps.