T51B-2874
Basin Modelling of the Laptev Sea Rift, NE Russia

Friday, 18 December 2015
Poster Hall (Moscone South)
Christian Brandes1, Dieter Franke2, Karsten Piepjohn2 and Christoph Gaedicke2, (1)Leibniz University of Hannover, Hannover, Germany, (2)BGR Federal Institute for Geosciences and Natural Resources, Hannover, Germany
Abstract:
The Laptev Sea Rift in the northeastern Arctic shelf area of Russia is a standard example for an oceanic rift system that propagates into a continent and plays an important role in the geodynamic models for the opening of the Eurasia Basin. To better understand the evolution of this rift, a basin modelling study was carried out with the software PetroMod®. The software simulates and analyses the burial history and temperature evolution of a sedimentary basin. It is a dynamic forward simulation based on the finite element method. The modelled section used in this study is based on a depth converted seismic section, acquired by the BGR. The section covers the Anisin Basin and is characterized by listric normal faults. The numerical simulation was supported by tectonic and sedimentological field data sets that were collected in outcrops during the CASE 13 expedition in 2011. Normal faults in outcrops were analysed using fault-slip inversion techniques to derive the paleo-extension direction. The presence of normal faults in relatively unconsolidated Paleogene sediments and in Neogene to Quaternary volcanic rocks, indicate very young extension in the area of the New Siberian Islands. The conceptual model for the simulation was built on the basis of the seismic data and the properties of the rocks and sediments observed in the outcrops. Initial results show that the present-day temperature field in the area of the Anisin Basin is characterized by seafloor-parallel isotherms. In the central part of the graben structure, the isotherms are slightly bent down and the heat-flow is reduced, probably due to blanketing effects. An extracted geohistory curve is almost linear and implies that subsidence controlled by faults is the dominating mechanism. From the simulation, sedimentation rates are derived that were highest in the early Paleocene phase of graben development and decreased in the late Eocene.