H41G-1417
Real-time hydrological early warning system at national scale for surface water and groundwater with stakeholder involvement

Thursday, 17 December 2015
Poster Hall (Moscone South)
Xin He, Simon Stisen and Hans Jørgen Henriksen, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
Abstract:
Hydrological models are important tools to support decision making in water resource management in the past few decades. Nowadays, frequent occurrence of extreme hydrological events has put focus on development of real-time hydrological modeling and forecasting systems. Among the various types of hydrological models, it is only the rainfall-runoff models for surface water that are commonly used in the online real-time fashion; and there is never a tradition to use integrated hydrological models for both surface water and groundwater with large scale perspective. At the Geological Survey of Denmark and Greenland (GEUS), we have setup and calibrated an integrated hydrological model that covers the entire nation, namely the DK-model. So far, the DK-model has only been used in offline mode for historical and future scenario simulations. Therefore, challenges arise when operating the DK-model in real-time mode due to lack of technical experiences and stakeholder awareness. In the present study, we try to demonstrate the process of bringing the DK-model online while actively involving the opinions of the stakeholders. Although the system is not yet fully operational, a prototype has been finished and presented to the stakeholders which can simulate groundwater levels, streamflow and water content in the root zone with a lead time of 48 hours and refreshed every 6 hours. The active involvement of stakeholders has provided very valuable insights and feedbacks for future improvements.