T44C-06
High-resolution estimates of Nubia-Somalia plate motion since 20 Ma from reconstructions of the Southwest Indian Ridge, Red Sea, and Gulf of Aden

Thursday, 17 December 2015: 17:15
304 (Moscone South)
Charles DeMets, University of Wisconsin Madison, Madison, WI, United States and Sergey Alexandrovich Merkuryev, Saint Petersburg State University, Insitute of Earth Sciences, St. Petersburg, Russia
Abstract:
We estimate Nubia-Somalia rotations at ~1-Myr intervals for the past 20 Myr from newly available, high-resolution reconstructions of the Southwest Indian Ridge and reconstructions of the Red Sea and Gulf of Aden. The former rotations are based on many more data, extend farther back in time, and have more temporal resolution than has previously been the case. Nubia-Somalia plate motion has remained remarkably steady since 5.2 Ma. For example, at the northern end of the East Africa rift, our Nubia-Somalia plate motion estimates at six different times between 0.78 Ma and 5.2 Ma agree to within 3% with the rift-normal component of motion that is extrapolated from the recently estimated Saria et al. (2014) GPS angular velocity. Over the past 10.6 Myr, the Nubia-Somalia rotations predict 42±4 km of rift-normal extension across the northern segment of the Main Ethiopian Rift. This agrees with approximate minimum and maximum estimates of 40 km and 53 km for post-10.6-Myr extension from seismological surveys of this narrow part of the plate boundary and is also close to 55-km and 48±3 km estimates from published and our own reconstructions of the Nubia-Arabia and Somalia-Arabia seafloor
spreading histories for the Red Sea and Gulf of Aden. Our new rotations exclude at high confidence level two previously published estimates of Nubia-Somalia motion based on inversions of Chron 5n.2 along the Southwest Indian Ridge, which predict rift-normal extensions of 13±14 km and 129±16 km across the Main Ethiopian Rift since 11 Ma. Constraints on Nubia-Somalia motion before ~15 Ma are weaker due to sparse coverage of pre-15-Myr magnetic reversals along the Nubia-Antarctic plate boundary, but appear to require motion before 15 Ma. Nubia-Somalia rotations that we estimate from a probabilistic analysis of geometric and age constraints from the Red Sea and Gulf of Aden are consistent with those determined from Southwest Indian Ridge data, particularly for the past 11 Myr. Nubia-Somalia rotations determined from the Red Sea/Gulf of Aden rotations and Southwest Indian Ridge rotations independently predict that motion during its oldest phase was highly oblique to the rift and a factor-of-two or more faster than at present, although large uncertainties remain in the rotation estimates for times before ~15 Ma.