V43B-3152
A General Model for Shallow Magmatic Intrusions
Abstract:
Shallow magmatic intrusions make room for themselves by upward bending of the elastic overburden. Previous studies have shown that the bending of the overlying layer first controls the dynamics. Then, when the radius reaches a few times the flexural wavelength of the overburden, it transitions to a gravity current regime. This model predicts the appropriate geometry for both terrestrial laccoliths and large mafic sills. However, it underestimates the absolute dimensions of these magmatic intrusions; in particular, it requires abnormally high viscosity to reconcile both observations and predictions.To get some insights into the effective flow viscosity, we develop a model that account for the cooling of such elastic-plated gravity currents. We show that the coupling between the temperature field and the flow itself leads to the formation of a highly viscous region at the tip that slows down the spreading in both regimes. The intrusions are predicted to be thicker and their dimensions, especially in the bending regime, are now consistent with observations.
By introducing the potentially complex structure of the overburden, we also show that the topography largely contributes to constrain the final intrusion morphology. For instance, in the case of an intrusion centered below a circular depression, the model predicts that the lithostatic increase at the crater rim prevents the magma from spreading laterally and enhances the thickening of the intrusion. This model has already proven successful in reproducing the deformations observed on potential intrusion centered below lunar impact craters.
Caldera complexes often exhibit ground deformations that might be associated to the formation of shallow magmatic intrusions. InSAR imaging and GPS measurements now provide efficient tools to monitor these deformations. We conclude this study by examining the ability of the model to reproduce the deformation observed in several caldera complexes.