H53M-02
Lessons Learned From Large-Scale Evapotranspiration and Root Zone Soil Moisture Mapping Using Ground Measurements (meteorological, LAS, EC) and Remote Sensing (METRIC)

Friday, 18 December 2015: 13:55
3011 (Moscone West)
Jan M H Hendrickx, New Mexico Inst Mining & Tech, Socorro, NM, United States
Abstract:
Large scale mapping of evapotranspiration and root zone soil moisture is only possible when satellite images are used. The spatial resolution of this imagery typically depends on its temporal resolution or the satellite overpass time. For example, the Landsat satellite acquires images at 30 m resolution every 16 days while the MODIS satellite acquires images at 250 m resolution every day. In this study we deal with optical/thermal imagery that is impacted by cloudiness contrary to radar imagery that penetrates through clouds. Due to cloudiness, the temporal resolution of Landsat drops from 16 days to about one clear sky Landsat image per month in the southwestern USA and about one every ten years in the humid tropics of Panama. Only by launching additional satellites can the temporal resolution be improved. Since this is too costly, an alternative is found by using ground measurements with high temporal resolution (from minutes to days) but poor spatial resolution. The challenge for large-scale evapotranspiration and root zone soil moisture mapping is to construct a layer stack consisting of N time layers covering the period of interest each containing M pixels covering the region of interest. We will present examples of the Phoenix Active Management Area in AZ (14,600 km2), Green River Basin in WY (44,000 km2), the Kishwaukee Watershed in IL (3,150 km2), the area covered by Landsat Path 28/Row 35 in OK (30,000 km2) and the Agua Salud Watershed in Panama (200 km2). In these regions we used Landsat or MODIS imagery for mapping evapotranspiration and root zone soil moisture by the algorithm Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) together with meteorological measurements and sometimes either Large Aperture Scintillometers (LAS) or Eddy Covariance (EC). We conclude with lessons learned for future large-scale hydrological studies.