S34A-08
Repeatability of high-speed migration of tremor along the Nankai subduction zone, Japan

Wednesday, 16 December 2015: 17:45
305 (Moscone South)
Aitaro Kato1, Hiroshi Tsuruoka2, Shigeki Nakagawa2 and Naoshi Hirata3, (1)University of Tokyo, Tokyo, Japan, (2)University of Tokyo, Bunkyo-ku, Japan, (3)Earthquake Research Institute, University of Tokyo, Tokyo, Japan
Abstract:
Tectonic tremors have been considered to be a swarm or superimposed pulses of low-frequency earthquakes (LFEs). To systematically analyze the high-speed migration of tremor [e.g., Shelly et al., 2007], we here focus on an intensive cluster hosting many low-frequency earthquakes located at the western part of Shikoku Island. We relocated ~770 hypocenters of LFEs identified by the JMA, which took place from Jan. 2008 to Dec. 2013, applying double differential relocation algorithm [e.g., Waldhauser and Ellsworth, 2000] to arrival times picked by the JMA and those obtained by waveform cross correlation measurements. The epicentral distributions show a clear alignment parallel to the subduction of the Philippine Sea plate, as like a slip-parallel streaking. Then, we applied a matched-filter technique to continuous seismograms recorded near the source region using relocated template LFEs during 6 years (between Jan. 2008 and Dec. 2013).

We newly detected about 60 times the number of template events, which is fairly larger than ones obtained by conventional envelope cross correlation method. Interestingly, we identified many repeated sequences of tremor migrations along the slip-parallel streaking (~350 sequences). Front of each or stacked migration of tremors can be modeled by a parabolic envelope, indicating a diffusion process. The diffusivity of parabolic envelope is estimated to be around 105 m2/s, which is categorized as high-speed migration feature (~100 km/hour). Most of the rapid migrations took place during occurrences of short-term slow slip events (SSEs), and seems to be triggered by ocean and solid Earth tides.

The most plausible explanation of the high-speed propagation is a diffusion process of stress pulse concentrated within a cluster of strong brittle patches on the ductile shear zone [Ando et al., 2012]. The viscosity of the ductile shear zone within the streaking is at least one order magnitude smaller than that of the slow-speed migration. This discrepancy of viscosity indicates that the streaking has different rheology compared with background main tremor/SSE belt. In addition, the diffusivity did not show any significant change before and after the Tohoku-Oki M9.0 Earthquake, suggesting that the high-speed propagation of tremors seems to be stable against external stress perturbations.