A32A-07
Development of a High-Resolution H3O+ Chemical Ionization Mass Spectrometer for Gas-phase Hydrocarbons and its Application During the 2015 SONGNEX Aircraft Campaign
Abstract:
In-situ time-of-flight chemical ionization mass spectrometers (ToF-CIMS) using H3O+ reagent ion chemistry (PTR-MS) are a relatively new technique in detection of gas-phase hydrocarbons, and recent improvements in instrument sensitivity, mass resolution, and ease of field deployment have expanded their use in atmospheric chemistry. The comparatively low-energy H3O+ ionization technique is ideal for measuring complex mixtures of hydrocarbons, and, compared to conventional quadrupole PTRMS, the newest generation of ToF-CIMS measure many more species simultaneously and with a sensitivity that is as high as a quadrupole PTR-MS. We describe here the development of a commercially available ToF CIMS into an H3O+CIMS suitable for deployment on aircraft, and its application during an aircraft campaign studying emissions from oil and natural gas extraction industry.We provide an overview of instrument development and specifications, including design, characterization, and field operation. We then discuss data processing and interpretation. First, we investigate determination of intensities of poorly resolved peaks. The mass resolution of the present instrument (m/Δm ~4500) enables separate analysis of many isobaric peaks, but peaks are also frequently not fully resolved. Using results from laboratory tests, we quantify how the accuracy can be limited by the overlap in neighboring peaks, and compare to theoretical predictions from literature. We then briefly describe our method for quality assurance of reported compounds, and correction for background and humidity effects. Finally, we present preliminary results from the first field deployment of this instrument during the Spring 2015 SONGNEX aircraft campaign. This campaign sampled emissions from oil and natural gas extraction regions and associated infrastructure in the Western and Central United States. We will highlight results that illustrate (1) new scientific capability from improved mass resolution, which dramatically increased the number of species measured, and (2) new capability from improved time resolution, which provides better spatial coverage during flights, leads to a more thorough and accurate measure of emissions composition, and potentially could enable emission rate estimates using eddy covariance analysis.