V53E-3156
Petrographic and Isotopic Evidence for Siderite Precursors to Iron Oxide Cements
Friday, 18 December 2015
Poster Hall (Moscone South)
David Loope, University of Nebraska Lincoln, Earth & Atmospheric Sciences, Lincoln, NE, United States
Abstract:
The origin of iron oxide mineralization in the Navajo Sandstone on the Colorado Plateau is important because of the different forms of distinct self-organization exhibited by these systems, the potential importance of the cements as geochronometers, and their use as analogs for similar mineralization on other planets. We consider this mineralization to be the product of microbially mediated oxidation of siderite in evolving groundwater systems. Iron oxide grain coatings were dissolved and the iron precipitated as siderite during a reducing phase of diagenesis. Upon invasion by oxidizing waters, iron-oxidizing bacteria colonized the redox interface between siderite-cemented and porous sandstone. Precipitation of iron oxide at this interface generated acid that facilitated further siderite dissolution. One difficulty in testing this hypothesis is that siderite is destroyed by the cm-scale transport of iron during oxidation. There are two lines of evidence that support the presence of a siderite precursor in these systems. 1)Rhombic grains that we interpret to be iron oxide pseudomorphs after siderite occur where in-situ oxidation rather than dissolution of the siderite precursor has occurred. 2) The δ56Fe values of these iron oxide cements are typically negative. We have measured the δ56Fe value of Navajo Sandstone to be 0.2‰; a value in good agreement with previous workers (Chan et al., 2006; Busigny and Dauphas, 2007). Bleaching of the sandstones apparently results in near complete removal of Fe with little change in the δ56Fe values of the bulk sandstone. The δ56Fe values of iron oxide cements have a median value of -0.8‰; similar to the value we obtained from ferroan carbonate (-0.86‰). Iron oxide from samples that comprise largely rhombic grains has similar δ56Fe values (-0.5‰) to those obtained from cements produced by siderite dissolution and subsequent oxidation (-0.4‰). Our interpretation is that siderite precipitated from an aqueous solution in which the δ56Fe value was <0.2‰ yielding siderite with δ56Fe values that ranged upward from -1.4‰. Invasion of the Navajo by oxidizing waters resulted in microbially mediated oxidation of the siderite concretions. The strongly negative values of the Fe oxides result from the near-quantitative oxidation of the siderite in a closed system.