T33C-2947
Vertical forearc tectonic displacements offer insights into underlying interplate thrust zone processes: 104-105 yr uplift/subsidence cycles in Southwest Pacific arcs may represent recoverable plastic deformation that is often falsely attributed to other causes

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Frederick W Taylor1, Luc L Lavier2, Cliff Frohlich3, Kaustubh Thirumalai1 and Alison K Papabatu4, (1)Institute for Geophysics, Austin, TX, United States, (2)Jackson School of Geosciences, Austin, TX, United States, (3)Univ Texas, Austin, TX, United States, (4)Dept. Mines, Energy, Water Resources, Minsitry of Natural Resources, Honiara, Solomon Islands
Abstract:
In the forearcs of subduction zones, the characteristics of both short-term (temporary earthquake cycle) and longer-term permanent vertical deformation offer insights into processes by which plates subduct. But permanent vertical deformation may be a product of several simultaneous processes, including tectonic erosion/underplating, changing dip of the slab, upward displacement due to buoyancy or bathymetric features, and plastic shortening/extension of the forearc wedge. Here we note the rarely recognized, but possibly common, phenomenon of intermediate time scale transient vertical movements (TVM’s). Both the central New Hebrides and Western Solomon forearcs have uplifted ≥500 m over time scales of 105 yr. Uplift started abruptly (over ≤10 ky) and proceeded at localized rates up to 7-8 mm/yr. Both initial uplifts terminated preceding rapid subsidence of similar dimensions and rates that, in turn, had followed yet older uplift. However, these uplifts and subsidences are superimposed on a yet longer-term trend of uplift on time scales >105 yr. The most recent uplifts extended 100-200 km along-arc and 60-90 km cross-arc while plate convergence was <10 km. These 105 yr vertical oscillations are most likely due to plastic shortening/extension driven by strong horizontal forces related to rugged seafloor bathymetry impinging on the outer forearc. Subsidence follows uplift when horizontal force abates temporarily and uplift is no longer supported by enhanced interplate coupling. Over the 105 yr time frame when interplate slip is <10 km, it is difficult to account for the timing, geography, and amounts of up and down motion by processes such as buoyancy or volumetric displacement of downgoing bathymetric features or by tectonic underplating/erosion. Instead, ~1% of shortening within the upper plate is sufficient to account for up to several hundred m of uplift across a large area of the forearc.