A53G-04
EXTREME PRECIPITATION IN A MULTI-SCALE MODELING FRAMEWORK
Friday, 18 December 2015: 14:25
3008 (Moscone West)
Morgan Phillips, Colorado State University, Fort Collins, CO, United States
Abstract:
Extreme precipitation events are characterized by infrequent but large magnitude accummulatations that generally occur on scales belowthat resolved by the typical Global Climate Model. The Multi-scale Modeling Framework allows for information about the precipitation on these scales to be simulated for long periods of time without the large computational resources required for the use of a full cloud permitting model. The Community Earth System Model was run for 30 years in both its MMF and GCM modes, and the annual maximum series of 24 hour precipitation accumulations were used to estimate the parameters of statistical distributions. The distributions generated from model ouput were thent to a General Extreme Value distribution and evaluated against observations. These results indicate that the MMF produces extreme precipitation with a statistical distribution that closely resembles that of observations and motivates the continued use of the MMF for analysis of extreme precipitation, and shows an improvement over the traditional GCM. The improvement in statistical distributions of annual maxima is greatest in regions that are dominated by convective precipitation where the small-scale information provided by the MMF heavily influences precipitation processes.