Size Distribution Studies on Sulfuric Acid-Water Particles in a Photolytic Reactor

Thursday, 17 December 2015
Poster Hall (Moscone South)
Joan C Kunz1, Hussain Abdullahi1, David Roy Hanson2, Siew Thao2 and Joaquin Vences2, (1)Augsburg College, Minneapolis, MN, United States, (2)Augsburg College, Chemistry, Minneapolis, MN, United States
The size distribution of particles composed of sulfuric acid and water were measured in a Photolytic cylindrical Flow Reactor (PhoFR, inner diameter 5 cm, length ~ 100 cm). In the reactor, nitrous acid, water and sulfur dioxide gases along with ultraviolet light produced sulfuric acid. The particles formed from these vapors were detected with a scanning mobility particle spectrometer equipped with a diethylene glycol condensation particle counter (Jiang et al. 2011). For a set of standard conditions, particles attained a log-normal distribution with a peak diameter of 6 nm, and a total number of about 3x105 cm-3. The distributions show that ~70 % of the particles are between 4 and 8 nm diameter (lnσ ~ 0.37). These standard conditions are: 296 K, 25% relative humidity, total flow = 3 sLpm, ~10 ppbv HONO, SO2 in excess. With variations of relative humidity, the total particle number varied strongly, with a power relationship of ~3.5, and the size distributions showed a slight increase in peak diameter with relative humidity, increasing about 1 nm from 8 to 33 % relative humidity. Variations of HONO at a constant light intensity (wavelength of ~ 360 nm) were performed and particle size and total number changed dramatically. Size distributions also changed drastically with variations of light intensity, accomplished by turning on/off some of the black light flourescent bulbs that illuminated the flow reactor. Comparisons of these size distributions to recently published nucleation experiments (e.g. Zollner et al., Glasoe et al.) as well as to simulations of PhoFR reveal important details about the levels of sulfuric acid present in PhoFR as well as possible base contaminants.