A31D-0095
Long-Term Global Aerosol Products from NASA Reanalysis MERRA-2 Available at GES DISC

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Suhung Shen1, Dana Ostrenga2 and Bruce Vollmer2, (1)George Mason University Fairfax, Fairfax, VA, United States, (2)NASA Goddard Space Flight Center, Greenbelt, MD, United States
Abstract:
Over 35 years of model simulated global aerosol products from NASA atmospheric reanalysis, second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) are published in summer 2015 at NASA Goddard Earth Science Data and Information Services Center (GES DISC). The MERRA-2 covers the period 1980-present, continuing as an ongoing climate analysis. Aerosol assimilation is included throughout the period, using MODIS, MISR, AERONET, and AVHRR (in the pre-EOS period). The aerosols are assimilated by using the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, which interact directly with the radiation parameterization, and radiatively coupled with atmospheric model dynamics in the Goddard Earth Observing System Model, Version 5 (GEOS-5). The data have been grouped into five datasets, including variables such as: dust column mass density, dust column mass density – PM 2.5, dust deposition, SO2 column mass density, aerosol optical depth analysis, total aerosol extinction AOT 550nm, black carbon emission etc. The data are available at hourly or 3-hourly and monthly at horizontal spatial resolution of 0.5x0.625 degrees (latitude x longitude) and 72 eta coordinate levels extending to 0.01 hPa for 3-dimensional variables. This presentation will document data access services at GES DISC and how to explore the data through the online visualization tool (Giovanni). As use cases, aerosol transportation of selected events will be demonstrated: a) SO2 column mass density from volcano Sierra Negra (Oct 2005), stayed in the tropical atmosphere for about 20 days; b) dust column mass density from a Asian dust storm in April 2001, transported dust from Asia across Pacific to North America in about one week; and c) black carbon column mass density from a wildfire late July to early September 2010 in Russia.