T51E-2959
AGE OF THE JACOBSVILLE SANDSTONE AND IMPLICATIONS FOR THE EVOLUTION OF THE MIDCONTINENT RIFT

Friday, 18 December 2015
Poster Hall (Moscone South)
Carol A Stein, University of Illinois at Chicago, Chicago, IL, United States, Jonas Kley, Georg-August-Universitaet Goettingen, Goettingen, Germany, Seth A Stein, Northwestern University, Evanston, IL, United States, John P Craddock, Macalester College, Geology, St. Paul, MN, United States and David H Malone, Illinois State University, Geography-Geology, Normal, IL, United States
Abstract:
Although the Midcontinent Rift (MCR) had been thought to have formed by isolated midplate volcanism and failed due to Grenville compression, a more plausible scenario is that it formed as part of the rifting of Amazonia from Laurentia and became inactive once seafloor spreading was established. Structural modeling of seismic reflection data shows an initial rift phase where flood basalts filled a fault-controlled extending basin, and a postrift phase where volcanics and sediments were deposited in a thermally subsiding basin without associated faulting. The MCR thus has the geometry of a rift but a LIP's magma volume. A crucial constraint on the evolution of the MCR comes from the roughly flat-lying Jacobsville sandstone, Bayfield group, and other equivalent sediments (JBE) that overlie the dipping volcanics and sediments deposited in the MCR basin. The MCR’s “failure” - the ending of volcanism and extension and thus its failure to develop into a new ocean basin - has been attributed to compression during the Grenville orogeny, the series of collisions that assembled Amazonia and other continents into the supercontinent of Rodinia from ~1.3 Ga - ~0.95 Ga. The JBE’s age is poorly constrained, with proposed ages ranging from ~1100 – ~542 Ma. Many analyses assume that the JBE are either post-rift sediments deposited in the thermal subsidence stage or syntectonic strata associated with the inversion of the rift. In this view, deformation of the JBE by reverse faults including the Keweenaw and Douglas faults occurred at ~1.060 Ga, reflecting Grenville compression ending the MCR’s evolution. However, paleomagnetic, structural, compositional, and detrital zircon data suggest that these units are much younger than previously thought, so much of the deformation thought to have occurred at ~1.06 Ga is likely much younger. Recent new zircon data for the Jacobsville collected in summer 2015 should help resolve this question.