H23I-06
Experimental Investigation and Pore-Scale Modeling of Non-Newtonian Fluid Flow in Porous Media

Tuesday, 15 December 2015: 14:55
3016 (Moscone West)
Scott Hauswirth, Amanda L Dye, Cass T Miller and Caroline Tapscott, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
Abstract:
Systems involving the flow of non-Newtonian fluids in porous media arise in a number of settings, including hydraulic fracturing, enhanced oil recovery, contaminant remediation, and biological systems. Development of accurate macroscale models of such systems requires an understanding of the relationship between the fluid and medium properties at the microscale and averaged macroscale properties. This study investigates the flow of aqueous solutions of guar gum, a major component of hydraulic fracturing fluids that exhibits Cross model rheological behavior. The rheological properties of solutions containing varying concentrations of guar gum were characterized using a rotational rheometer and the data were fit to a model relating viscosity to shear rate and concentration. Flow experiments were conducted in a porous medium-packed column to measure the pressure response during the flow of guar gum solutions at a wide range of flow rates and determine apparent macroscale viscosities and shear rates. To investigate the relationship between the fluid rheology, microscale physics, and the observed macroscale properties, a lattice Boltzmann pore scale simulator incorporating non-Newtonian behavior was developed. The model was validated, then used to simulate systems representative of the column experiments, allowing direct correlation of detailed microscale physics to the macroscale observations.