C42A-06
Quantifying Uncertainty in the Greenland Surface Mass Balance Elevation Feedback
Abstract:
As the shape of the Greenland ice sheet responds to changes in surface mass balance (SMB) and dynamics, it affects the surface mass balance through the atmospheric lapse rate and by altering atmospheric circulation patterns. Positive degree day models include simplified representations of this feedback, but it is difficult to simulate with state-of-the-art models because it requires coupling of regional climate models with dynamical ice sheet models, which is technically challenging. This difficulty, along with the high computational expense of regional climate models, also drastically limits opportunities for exploring the impact of modelling uncertainties on sea level projections.We present a parameterisation of the SMB-elevation feedback in the MAR regional climate model that provides a far easier and quicker estimate than atmosphere-ice sheet model coupling, which can be used with any ice sheet model. This allows us to use ensembles of different parameter values and ice sheet models to assess the effect of uncertainty in the feedback and ice sheet model structure on future sea level projections.
We take a Bayesian approach to uncertainty in the feedback parameterisation, scoring the results from multiple possible "SMB lapse rates" according to how well they reproduce a MAR simulation with altered ice sheet topography. We test the impact of the resulting parameterisation on sea level projections using five ice sheet models forced by MAR (in turned forced by two different global climate models) under the emissions scenario A1B. The estimated additional sea level contribution due to the SMB–elevation feedback is 4.3% at 2100 (95% credibility interval 1.8–6.9%), and 9.6% at 2200 (3.6–16.0%).