GC12B-09
What Have We Learned About Arctic Carbon Since The First State of the Carbon Cycle Report?
Monday, 14 December 2015: 11:30
3014 (Moscone West)
Edward Schuur, Northern Arizona University, Flagstaff, AZ, United States
Abstract:
Large pools of organic carbon were reported in The First State of the Carbon Cycle Report, but measurements from high latitude ecosystems, in particular for deeper soils >1m depth, remained scarce. A newly enlarged soil carbon database with an order of magnitude more numerous deep sampling sites has verified the widespread pattern of large quantities of carbon accumulated deep in permafrost (perennially frozen) soils. The known pool of permafrost carbon across the northern circumpolar permafrost zone is now estimated to be 1330-1580 Pg C, with the potential for an additional ~400 Pg C in deep permafrost sediments. In addition, an uncertainty estimate of plus/minus 15% has now been calculated for the soil carbon pool in the surface 0-3m. Laboratory incubations of these permafrost soils reveal that a significant fraction can be mineralized by microbes upon thaw and converted to carbon dioxide and methane on time scales of years to decades, with decade-long average losses from aerobic incubations ranging from 6-34% of initial carbon. Carbon emissions from the same soils incubated in an anaerobic environment are, on average, 78-85% lower than aerobic soils. But, the more potent greenhouse gas methane released under anaerobic conditions in part increases the climate impact of these emissions. While mean quantities of methane are only 3% to 7% that of carbon dioxide emitted from anaerobic incubations (by weight of C), these mean methane values represent 25% to 45% of the overall potential impact on climate when accounting for the higher global warming potential of methane. Taken together though, in spite of the more potent greenhouse gas methane, a unit of newly thawed permafrost carbon could have a greater impact on climate over a century if it thaws and decomposes within a drier, aerobic soil as compared to an equivalent amount of carbon within a waterlogged soil or sediment. Model projections tend to estimate losses of carbon in line with empirical measurements, but differ in the extent that they project that soil carbon loss will be compensated by new plant growth and carbon input to the surface soil. Together, the loss of carbon from thawing permafrost soils and disturbance by fire in combination with offsetting plant uptake response determines the net effect of high latitudes on the carbon cycle of both North America and the globe.