DI13A-2645
Reworking of Paleoproterozoic crust and its implications for the assembly of Rodinia: Evidence from Neoproterozoic (ca. 0.8~0.9 Ga) granitoids in NE China

Monday, 14 December 2015
Poster Hall (Moscone South)
Feng Wang, JLU Jilin University, Changchun, China
Abstract:
NE China, located between the North China Craton and the Siberian Craton, is considered to represent the eastern section of Central Asian Orogenic Belt (CAOB), and thought to be a collage of several ancient microcontinental massifs. Geochronological and geochemical data on Neoproterozoic granitoids in Songnen-Zhangguangcai Range Massif are presented in order to shed light on the genesis and the genetic link to the tectonic evolution of Rodinia. LA-ICPMS zircon U-Pb ages of 915±4 Ma, 841±5 Ma, and 917±4 Ma, were obtained for two granodiorites and one monzogranite, respectively. These granitoids have SiO2 = 67.89–71.18 wt.%, MgO = 0.53–0.88 wt.%, and Na2O+K2O = 6.48–9.61 wt.%, and are chemically a calc-alkaline series. They are characterized by enrichment in light rare earth elements and large ion lithophile elements, and depletion in heavy rare earth elements and high field strength elements such as Nb, Ta, and Ti, consistent with the chemistry of igneous rocks from an active continental margin setting. The zircons with different ages (ca. 915~917 and 841 Ma) from these granitoids share similar characteristics in Hf isotopic composition. In situ Hf analyses of zircons show that εHf (t) values and two-stage model ages of –4.7 ~ +1.5 and 1.7~1.9 Ga, respectively. It is evidence that these Neoproterozoic granitoids were derived from the reworking of the Paleoproterozoic continental crust. The above findings, combined with the regional geologic information, imply that these granitoids formed under an active continental margin setting related to the assembly of Rodinia in the early stage of Neoproterozoic. Meanwhile, similar magmatic events history also suggests that the Songnen-Zhangguangcai Range Massif have an affinity to the Siberia Craton. This research was financially supported by research grants from the Natural Science Foundation of China (Grants 41330206 and 41402043).