H21H-1486
Science Data System Contribution to Calibrating and Validating SMAP Data Products
Tuesday, 15 December 2015
Poster Hall (Moscone South)
David Cuddy, NASA Jet Propulsion Laboratory, Pasadena, CA, United States
Abstract:
NASA’s Soil Moisture Active Passive (SMAP) mission retrieves global surface soil moisture and freeze/thaw state using measurements acquired by a radiometer and a synthetic aperture radar that fly on an Earth orbiting satellite. The SMAP observatory launched from Vandenberg Air Force Base on January 31, 2015 into a near-polar, sun-synchronous orbit. This paper describes the contribution of the SMAP Science Data System (SDS) to the calibration and on-going validation of the radar backscatter and radiometer brightness temperatures. The Science Data System designed, implemented and operated the software that generates data products that contain various geophysical parameters including soil moisture and freeze/thaw states, daily maps of these geophysical parameters, as well as modeled analyses of global soil moisture and carbon flux in Boreal regions. The SDS is a fully automated system that processes the incoming raw data from the instruments, incorporates spacecraft and instrument engineering data, and uses both dynamic and static ancillary products provided by the scientific community. The standard data products appear in Hierarchical Data Format-5 (HDF5) format. These products contain metadata that conform to the ISO 19115 standard. The Alaska Satellite Facility (ASF) hosts and distributes SMAP radar data products. The National Snow and Ice Data Center (NSIDC) hosts and distributes all of the other SMAP data products.