T41B-2893
Coseismic uplift and fault model of marine active faults in 1729 AD revealed by fossilized intertidal sessile organisms along the northern coast of the Noto Peninsula, central Japan

Thursday, 17 December 2015
Poster Hall (Moscone South)
Masaaki Hamada1, Yoshihiro Hiramatsu1, Mitsuhiro Oda2 and Hiroyuki Yamaguchi3, (1)Kanazawa University, Kanazawa, Japan, (2)Hokuriku Electric Power Co., Ltd., Toyama, Japan, (3)Natural Consultant Co., Ltd., Nonoichi, Japan
Abstract:
The Noto Peninsula is located in the backarc region of southwest Japan and is characterized by geomorphologic features formed by active tectonics and glacial eustasy through the Quaternary. Pleistocene marine terraces along the northern coast of the Noto Peninsula indicate uplift in the coastal area through the late Quaternary (Ota and Hirakawa, 1979). Recently, an active fault zone on the seafloor off the coast was found and was divided into four segments, Monzen-oki, Saruyama-oki, Wajima-oki, and Suzu-oki, from west to east (Inoue and Okamura, 2010).

We investigated vertical displacement along the coast using intertidal sessile organisms at nine sites on the rocky coast. We measured the height of fossilized Pomatoleios kraussii by GPS surveying together with a sea-level change curve, and dated them using the AMS 14C method. The vertical displacements and dates at the sites implied that coastal uplift occurred along 20 km of coastline, corresponding to the Wajima-oki segment zone, and most likely between 1600 and 1800 AD. This is coincident with seismic damage in this area in 1729 AD recorded in historical documents.

We constructed a fault model with three rectangular faults in a homogeneous elastic half-space and estimated the optimal net slip and rake by a non-linear inversion method (Matsu’ura and Hasegawa, 1987). The best fit to the estimated vertical displacements is provided by a net slip of 1.8 m with a rake of 90° for the western fault plane and a net slip of 0.6 m with a rake of 90° for the center and the eastern fault planes. The moment magnitude (Mw) calculated from these parameters with a rigidity of 30 GPa is 6.6. We compared the elevation distribution of the former shorelines based on coastal terraces and the 1729 earthquake uplifts. Assuming that the coastal uplift is caused by the cumulative crustal deformation produced by the same size event as the 1729 earthquake, the average recurrence interval of the events is estimated to be 1700 years.