DI31A-2568
Calcium isotopic composition of mantle peridotites

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Fang Huang, USTC University of Science and Technology of China, Hefei, China, Jinting Kang, University of Science and Technology of China, Hefei, China and Zhaofeng Zhang, GIG Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, State Key Laboratory of Isotope Geochemistry, Guangzhou, China
Abstract:
Ca isotopes are useful to decipher mantle evolution and the genetic relationship between the Earth and chondrites. It has been observed that Ca isotopes can be fractionated at high temperature [1-2]. However, Ca isotopic composition of the mantle peridotites and fractionation mechanism are still poorly constrained. Here, we report Ca isotope composition of 12 co-existing pyroxene pairs in 10 lherzolites, 1 harzburgite, and 1 wehrlite xenoliths collected from Hainan Island (South Eastern China). Ca isotope data were measured on a Triton-TIMS using the double spike method at the Guangzhou Institute of Geochemistry, CAS. The long-term external error is 0.12‰ (2SD) based on repeated analyses of NIST SRM 915a and geostandards.

δ44Ca of clinopyroxenes except that from the wehrlite ranges from 0.85‰ to 1.14‰, while opx yields a wide range from 0.98‰ up to 2.16‰. Co-existing pyroxene pairs show large ∆44Caopx-cpx (defined as δ44Caopx44Cacpx) ranging from 0 to 1.23‰, reflecting equilibrium fractionation controlled by variable Ca contents in the opx. Notably, clinopyroxene of wehrlite shows extremely high δ44Ca (3.22‰). δ44Ca of the bulk lherzolites and harzburgites range from 0.86‰ to 1.14‰. This can be explained by extracting melts with slightly light Ca isotopic compositions. Finally, the high δ44Ca of the wehrlite (3.22‰) may reflect metasomatism by melt which has preferentially lost light Ca isotopes due to chemical diffusion during upwelling through the melt channel.

[1] Amini et al (2009) GGR 33; [2] Huang et al (2010) EPSL 292.