GC21B-1089
Soil Parameters for Representing a Karst Geologic Terrain in the Noah Land-Surface Model over Tennessee and Kentucky

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Zachary Sullivan and Xingang Fan, Western Kentucky University, Bowling Green, KY, United States
Abstract:
Currently, the Noah Land-Surface Model (Noah-LSM) coupled with the Weather Research and Forecasting (WRF) model does not have a representation of the physical behavior of a karst terrain found in a large area of Tennessee and Kentucky and 25% of land area worldwide. The soluble nature of the bedrock within a karst geologic terrains allows for the formation of caverns, joints, fissures, sinkholes, and underground streams which affect the hydrological behavior of the region. The Highland Rim of Tennessee and the Pennyroyal Plateau and Bluegrass region of Kentucky make up a larger karst area known as the Interior Low Plateau. The highly weathered upper portion of the karst terrain, known as the epikarst, allows for more rapid transport of water through the system. For this study, hydrological aspects, such as bedrock porosity and the hydraulic conductivity, were chosen within this region in order to determine the most representative subsurface parameters for the Noah-LSM. These values along with the use of similar proxy values were chosen to calculate and represent the remaining eight parameters within the SOILPARM.TBL for the WRF model.

Hydraulic conductivity values show a variation ranging from around 10-7 and 10-5 ms-1 for the karst bedrock within this region. A sand and clay soil type was used along with bedrock parameters to determine an average soil parameter type for the epikarst bedrock located within this region. Results from this study show parameters for an epikarst bedrock type displaying higher water transport through the system, similar to that of a sandy soil type with a water retention similar to that of a loam type soil. The physical nature of epikarst may lead to a decrease in latent heat values over this region and increase sensible heat values. This, in turn, may effect boundary layer growth which could lead to convective development. Future modeling work can be conducted using these values by way of coupling the soil parameters with the karst regions of the Tennessee/Kentucky area.