DI52B-03
The Undiscovered Country: Can We Estimate the Likelihood of Extrasolar Planetary Habitability?

Friday, 18 December 2015: 10:50
308 (Moscone South)
Cayman T Unterborn, Wendy R Panero and Scott David Hull, Ohio State University Main Campus, Columbus, OH, United States
Abstract:
Plate tectonics have operated on Earth for a majority of its lifetime. Tectonics regulates atmospheric carbon and creates a planetary-scale water cycle, and is a primary factor in the Earth being habitable. While the mechanism for initiating tectonics is unknown, as we expand our search for habitable worlds, understanding which planetary compositions produce planets capable of supporting long-term tectonics is of paramount importance. On Earth, this sustentation of tectonics is a function of both its structure and composition. Currently, however, we have no method to measure the interior composition of exoplanets. In our Solar system, though, Solar abundances for refractory elements mirror the Earth’s to within ~10%, allowing the adoption of Solar abundances as proxies for Earth’s. It is not known, however, whether this mirroring of stellar and terrestrial planet abundances holds true for other star-planet systems without determination of the composition of initial planetesimals via condensation sequence calculations. Currently, all code for ascertaining these sequences are commercially available or closed-source. We present, then, the open-source Arbitrary Composition Condensation Sequence calculator (ArCCoS) for converting the elemental composition of a parent star to that of the planet-building material as well as the extent of oxidation within the planetesimals.

These data allow us to constrain the likelihood for one of the main drivers for plate tectonics: the basalt to eclogite transition subducting plates. Unlike basalt, eclogite is denser than the surrounding mantle and thus sinks into the mantle, pulling the overlying slab with it. Without this higher density relative to the mantle, plates stagnate at shallow depths, shutting off plate tectonics. Using the results of ArCCoS as abundance inputs into the MELTS and HeFESTo thermodynamic models, we calculate phase relations for the first basaltic crust and depleted mantle of a terrestrial planet produced from a given stellar composition. We find that for many stellar systems, the basalt-eclogite transition does not increase plate density enough relative to the mantle. Even should these planets initiate plate tectonics, the plate will stagnate in the shallow mantle, shutting off tectonics and produce a planet not habitable to life as we know it.