NH52A-06
Development of a Micro-UAV Hyperspectral Imaging Platform for Assessing Hydrogeological Hazards
Abstract:
The exacerbating global weather changes have cast significant impacts upon the proportion of water supplied to agriculture. Therefore, one of the 21stCentury Grant Challenges faced by global population is securing water for food. However, the soil-water behavior in an agricultural environment is complex; among others, one of the key properties we recognize is water repellence or hydrophobicity, which affects many hydrogeological and hazardous conditions such as excessive water infiltration, runoff, and soil erosion.Under a US-Israel research program funded by USDA and BARD at Israel, we have proposed the development of a novel micro-unmanned aerial vehicle (micro-UAV or drone) based hyperspectral imaging platform for identifying and assessing soil repellence at low altitudes with enhanced flexibility, much reduced cost, and ultimately easy use. This aerial imaging system consists of a generic micro-UAV, hyperspectral sensor aided by GPS/IMU, on-board computing units, and a ground station. The target benefits of this system include: (1) programmable waypoint navigation and robotic control for multi-view imaging; (2) ability of two- or three-dimensional scene reconstruction for complex terrains; and (3) fusion with other sensors to realize real-time diagnosis (e.g., humidity and solar irradiation that may affect soil-water sensing). In this talk we present our methodology and processes in integration of hyperspectral imaging, on-board sensing and computing, hyperspectral data modeling, and preliminary field demonstration and verification of the developed prototype.