On the Timing of Glacial Terminations in the Equatorial Pacific

Friday, 18 December 2015
Poster Hall (Moscone South)
Deborah Khider1, Seonmin Ahn2, Lorraine E Lisiecki1, Charles Lawrence2 and Markus Kienast3, (1)University of California Santa Barbara, Santa Barbara, CA, United States, (2)Brown University, Providence, RI, United States, (3)Dalhousie University, Halifax, NS, Canada
Understanding the mechanisms through which the climate system responds to orbital insolation changes requires establishing the timing of events imprinted on the geological record. In this study, we investigate the relative timing of the glacial terminations across the equatorial Pacific in order to identify a possible mechanism through which the tropics may have influenced a global climate response. The relative termination timing between the eastern and western equatorial Pacific was assessed from 15 published SST records based on Globigerinoides ruber Mg/Ca or alkenone thermometry. The novelty of our study lies in the accounting of the various sources of uncertainty inherent to paleoclimate reconstruction and timing analysis. Specifically, we use a Monte-Carlo process allowing sampling of possible realizations of the time series that are functions of the uncertainty of the benthic δ18O alignment to a global benthic curve, of the SST uncertainty, and of the uncertainty in the change point, which we use as a definition for the termination timing. We find that the uncertainty on the relative timing estimates is on the order of several thousand years, and stems from age model uncertainty (60%) and the uncertainty in the change point detection (40%). Random sources of uncertainty are the main contributor, and, therefore, averaging over a large datasets and/or higher resolution records should yield more precise and accurate estimates of the relative lead-lag. However, at this time, the number of records is not sufficient to identify any significant differences in the timing of the last three glacial terminations in SST records from the Eastern and Western Tropical Pacific.