P43E-06
An improved model for interplanetary dust grain fluxes to the outer planets

Thursday, 17 December 2015: 15:10
2009 (Moscone West)
Andrew R Poppe, University of California Berkeley, Berkeley, CA, United States
Abstract:
We present an improved model for interplanetary dust grain fluxes in the outer solar system constrained by in-situ dust density observations. A dynamical dust grain tracing code is used to establish relative dust grain densities and three-dimensional velocity distributions in the outer solar system for four main sources of dust grains: Jupiter-family comets, Halley-type comets, Oort-Cloud comets, and Edgeworth-Kuiper Belt objects. Model densities are constrained by in-situ dust measurements by the New Horizons Student Dust Counter, the Pioneer 10 meteoroid detector, and the Galileo Dust Detection System (DDS). The model predicts that Jupiter-family comet grains dominate the interplanetary dust grain mass flux inside approximately 10 AU, Oort-Cloud cometary grains may dominate between 10 and 25 AU, and Edgeworth-Kuiper Belt grains are dominant outside 25 AU. The model also predicts that while the total interplanetary mass flux at Jupiter roughly matches that inferred by the analysis of the Galileo DDS measurements, mass fluxes to Saturn, Uranus, and Neptune are at least one order-of-magnitude lower than that predicted by extrapolations of dust grain flux models from 1 AU. We present modeled mass fluxes to various moons, atmospheres, and ring systems of the outer planets.