A11S-04
MEDIUM-RANGE PREDICTABILITY OF CONTRAIL-CIRRUS DEMONSTRATED DURING EXPERIMENTS ML-CIRRUS AND ACCESS-II
Abstract:
The Contrail Cirrus Prediction model CoCiP (doi:10.5194/gmd-5-543-2012) has been applied quasi operationally to predict contrails for flight planning of ML-CIRRUS (C. Voigt, DLR, et al.) in Europe and for ACCESS II in California (B. Anderson, NASA, et al.) in March-May 2014. The model uses NWP data from ECMWF and past airtraffic data (actual traffic data are used for analysis). The forecasts provided a sequence of hourly forecast maps of contrail cirrus optical depth for 3.5 days, every 12 h. CoCiP has been compared to observations before, e.g. within a global climate-aerosol-contrail model (Schumann, Penner et al., ACPD, 2015, doi:10.5194/acpd-15-19553-2015). Good predictions would allow for climate optimal routing (see, e.g., US patent by Mannstein and Schumann, US 2012/0173147 A1).The predictions are tested by: 1) Local eyewitness reports and photos, 2) satellite observed cloudiness, 3) autocorrelation analysis of predictions for various forecast periods, 4) comparisons of computed with observed optical depth from COCS (doi:10.5194/amt-7-3233-2014, 2014) by IR METEOSAT-SEVIRI observations over Europe. The results demonstrate medium-range predictability of contrail cirrus to a useful degree for given traffic, soot emissions, and high-quality NWP data. A growing set of satellite, Lidar, and in-situ data from ML-CIRRUS and ACCENT are becoming available and will be used to further test the forecast quality.
The autocorrelation of optical depth predictions is near 70% for 3-d forecasts for Europe (outside times with high Sahara dust loads), and only slightly smaller for continental USA.
Contrail cirrus is abundant over Europe and USA. More than 1/3 of all cirrus measured with the research aircraft HALO during ML-CIRRUS was impacted by contrails. The radiative forcing (RF) is strongly daytime and ambience dependent. The net annual mean RF, based on our global studies, may reach up to 0.08 W/m2 globally, and may well exceed 1 W/m2 regionally, with maximum over Europe. Hence, any mean to reduce the climate impact of aviation contrails may be important. Local RF values along a given flight route are far larger in magnitude and may be positive and negative and change strongly for small route changes, hence offer larger potential for mitigation.