NH33A-1908
Latest Holocene Mapping of Tsunamigenically- and Seismogenically-Influenced Beach, Dune and Fluvial Landforms at Tolowa Dunes State Park, Northwestern California

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Patrick Robison Vaughan, California State Parks, Eureka, CA, United States
Abstract:
Beach, dune, fluvial, and marine terrace deposits comprise a 16 kilometer (km) coastal strip immediately south of the Smith River at Tolowa Dunes State Park (TDSP), ~ 3.5 km north-northwest from downtown Crescent City, California. The park has numerous Native American sites that are vulnerable to sea level rise and coastal erosion, part of which may be influenced by Cascadia interseismic deformation. Efforts at removal of exotic beach grass (Ammophila arenaria) that stabilizes most of the dune complex have begun; vegetation removal will remobilize the dunes and could obscure and also expose near surficial geologic features. Using a LiDAR base to capture extant data and give context to future resource protection projects, I surficially mapped the dunes and provisionally interpreted, tsunamigenically-derived cobbles (which are more than five feet thick in one road cut exposure) that extensively mantle the deflation plain in the lee of the foredune. Natural, test pit and auger exposures helped characterize fluvial and marsh deposits in the southern bank and floodplain of the Smith River. Optically stimulated luminescence and/or radiocarbon dates constrain the ages for cobble deposits and dunes throughout the park, and liquefaction features exposed in the southern bank of the Smith River. In combination with estimated rates of dune formation and migration at TDSP since the A.D. 1700 Cascadia earthquake, the ages for seismogenically-sourced sediment associated with dune ridges and cobble deposits are tentatively correlated with the ages of latest Holocene Cascadia triggered turbidites dated by Goldfinger et al. (2012) on the Smith River platform. The mapping also helped identify a marine terrace sequence on the southern limb of the northwest-trending Lake Earl Syncline that bifurcates the park, and suggests projection of the northwest-trending Cemetery Scarp, part of the Point St. George fault complex (Polenz and Kelsey 1999), through the southern part of the park.