B31C-0564
Successional change in photosynthetic capacities after wildfires across the North American boreal forests

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Narumi Tahara1, Masahito Ueyama1, Hiroki Iwata2, Kazuhito Ichii3, Yoshinobu Harazono1 and Hirohiko Nagano4, (1)Osaka Prefecture University, Sakai, Japan, (2)Shinshu University, Matsumoto, Japan, (3)JAMSTEC, Yokohama, Japan, (4)Chiba University, Matudo, Japan
Abstract:
Wildfire is a major disturbance across the North American boreal forests. Canopy ecophysiology is important to understand recovery of carbon dioxide and water vapor fluxes after wildfires.

We developed a big-leaf model coupled photosynthesis (Farquhar et al., 1980) and stomatal conductance (Ball et al., 1987) models. We inputted eddy covariance data from fire chronosequence across the North American boreal forests into the big-leaf model for optimizing parameters: maximum carboxylation rate at 25℃ (Vcmax25) and stomatal conductance parameters. The model was optimized with a global optimization technique: SCE-UA method (Duan et al., 1994). The estimated canopy-scale parameters were then downscaled into a leaf scale (vcmax25; values per sun leaf area) using a two-leaf radiation transfer model (de Pury and Farquhar, 1997) and leaf area index. We used 6 sites from two fire chronosequence in Alaska (1~, 3~, 5~, 15~ and 80~ years after fire; Liu et al., 2005; Iwata et al., 2011) and 6 sites from a Canadian chronosequence study (6~, 15~, 23~, 40~ and 74~ years after fire; Goulden et al., 2010).

Preliminary results showed clear seasonal variations in canopy-scale Vcmax25 with the maximum during the summer. In Alaska, the downscaled vcmax25 for four years after fire exceeded those of mature forests, indicating that the photosynthetic capacity recovered quickly in the early successional stage. This quick recovery was not seen in gross primary productivity. We will show the variations of the ecophysiological parameters in terms of environment conditions and stand age.

 

References Ball et al., 1987: In Progress in Photosynthesis Research, 221-224. de Pury and Farquhar, 1997: Plant, Cell and Environ., 20, 537-557. Duan et al., 1994: J. Hydrology, 158, 265-284. Farquhar et al., 1980: Planta, 149, 78-90. Goulden et al., 2010: Global Change Biol., 17, 855-871. Iwata et al., 2011: SOLA., 7, 105-108. Liu et al., 2005: J. Geophys. Res., 110, D13101.