T41A-2846
Systematic Study of Foreshocks and Triggered Earthquakes During the 2010 Mw7.2 El Mayor-Cucapah Earthquake Sequence

Thursday, 17 December 2015
Poster Hall (Moscone South)
Xiaofeng Meng, Georgia Tech, Earth and Atmospheric Sciences, Atlanta, GA, United States, Zhigang Peng, Georgia Institute of Technology Main Campus, Atlanta, GA, United States, Sizhuang Deng, USTC University of Science and Technology of China, Hefei, China and Raul Ramon Castro, CICESE Seismology, San Diego, CA, United States
Abstract:
The 2010 Mw7.2 El Mayor-Cucapah earthquake occurred southwest of the Pacific-North America plate boundary in north Baja California. It was preceded by an intensive foreshock sequence, and was followed by numerous aftershocks both on and off the mainshock rupture zone, hence providing us a great opportunity to study the physical mechanisms of foreshock and aftershock triggering. In our previously published work (Meng and Peng, GJI, 2014), we focused on the seismicity rate changes around the Salton Sea Geothermal Field (SSGF) and along the San Jacinto Fault (SJF) following the mainshock. Based on a recently developed matched filter technique, we were able to detect up to 20 times more events than listed in the SCSN catalog. We found that the seismicity rate near SSGF and SJF both experienced significant increase immediately following the mainshock. However, the seismicity rate near SSGF, where static Coulomb stress decreased, dropped below the pre-mainshock level after ~50 days. On the other hand, the seismicity rate near SJF, where static Coulomb stress increased, remained high till the end of our detecting time window. Such pattern indicates that both static and dynamic triggering may coexist, but dominate in different time scales. Motivated by this success, we shift our focus to the foreshock and aftershock sequence of the El Mayor-Cucapah event. We utilize available seismic stations immediately north to US-Mexico boarder and a few stations within Mexico to conduct a similar detection ~40 days before to 40 days after the mainshock. We aim to obtain a complete foreshock sequence and investigate its spatio-temporal evolutions before the mainshock. Moreover, we plan to study similar patterns for aftershocks and the corresponding triggering mechanisms. Updated results will be presented at the meeting.