GC23J-1213
Detecting Rock Glacier Dynamics in Southern Carpathians Mountains Using High-Resolution Optical and Multi-Temporal SAR Satellite Imagery .....

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Marius Necsoiu, Southwest Research Institute San Antonio, San Antonio, TX, United States and Alexandru Onaca, West University of Timisoara, Geography, Timisoara, Romania
Abstract:
This research provided the first documented assessment of the dynamics of rock glaciers in Southern Carpathian Mountains over almost half a century (1968-2014). The dynamics of four representative rock glaciers were assessed using complementary satellite-based optical and radar remote sensing techniques.

We investigated the dynamics of the area using co-rectification of paired optical satellite datasets acquired by SPOT5, WV-1, Pléiades, and Corona to estimate short term (7 years) and longer term changes (44 years). Accurately rectifying and co-registering Corona KH-4B imagery allowed us to expand the time horizon over which changes in this alpine environment could be analyzed. The displacements revealed by this analysis correlate with variations in local slope of the rock glaciers, and presence or absence of permafrost. For radar analysis, nine ascending ALOS-1 PALSAR images were used based clear sky and absence of snow groundcover (i.e. June–October). Although decorrelation limits the ability to perform quantitative InSAR analyses, loss of coherence was useful in detecting subtle changes in active rock glacier environments, as well as other mass movements including rock falls, rock avalanches, debris flows, creep of permafrost, and solifluction. Small Baseline Subset (SBAS) InSAR analysis successfully quantified rates of change for unstable areas.

The results of this investigation, although based on limited archived imagery, demonstrate that correlation analysis, coherence analysis, and multitemporal InSAR techniques can yield useful information for detecting creeping permafrost in a complex mountain environment, such as Retezat Mountains. Our analyses showed that rock glaciers in the Southern Carpathian Mountains are experiencing very slow annual movement of only a few cm per year. Results of the remote sensing analyses are consistent with field observations of permafrost occurrence at these sites (for more, please see Abstract ID# 68413). The combined optical/radar approach can be widely applicable to other regions where information on glacier rock dynamics is scarce or completely absent, with wider implications for understanding the effects of climate change on rock glaciers around the world.