C33A-0795
Rain-on-snow Events in Southwestern British Columbia: A Long-term Analysis of Meteorological Conditions and Snowpack Response

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Joel William Trubilowicz and Dan Moore, University of British Columbia, Vancouver, BC, Canada
Abstract:
Snowpack dynamics and runoff generation in coastal mountain regions are complicated by rain-on-snow (ROS) events. During major ROS events associated with warm, moist air and strong winds, turbulent heat fluxes can produce substantial melt to supplement rainfall, but previous studies suggest this may not be true for smaller, more frequent events. The internal temperature and water content of the snowpack are also expected to influence runoff generation during ROS events: a cold snowpack with no liquid water content will have the ability to store significant amounts of rainfall, whereas a ‘ripe’ snowpack may begin to melt and generate outflow with little rain input. However, it is not well understood how antecedent snowpack conditions and energy fluxes differ between ROS events that cause large runoff events and those that do not, in large part because major flood-producing ROS events occur infrequently, and thus are often not sampled during short-term research projects. To generate greater understanding of runoff generation over the spectrum of ROS magnitudes and frequencies, we analyzed data from Automated Snow Pillow (ASP) sites, which record hourly air temperature, precipitation and snowpack water equivalent and offer up to several decades of data at each site. We supplemented the ASP data with output from the North American Regional Reanalysis (NARR) product to support point scale snow modeling for 335 ROS event records from six ASP sites in southwestern BC from 2003 to 2013. Our analysis reconstructed the weather conditions, surface energy exchanges, internal mass and energy states of the snowpack, and generation of snow melt and water available for runoff (WAR) for each ROS event. Results indicate that WAR generation during large events is largely independent of the snowpack conditions, but for smaller events, the antecedent snow conditions play a significant role in either damping or enhancing WAR generation.