B53G-0642
Nitrate-transformations during simulated drought on a restored floodplain

Friday, 18 December 2015
Poster Hall (Moscone South)
Beth Hoagland1, Tess A Russo1, Calla M. Schmidt2 and Danielle Tran2, (1)Pennsylvania State University Main Campus, University Park, PA, United States, (2)University of San Francisco, San Francisco, CA, United States
Abstract:
Water resources in the California Central Valley face challenges due to recurring drought, aging levee systems, and nitrate contamination. As decisions are made to restore floodplain connectivity, soil microbial metabolic pathways such as denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) transform nitrate under saturated soil conditions and may each affect downstream water quality. However, few studies have quantified the contribution of all three pathways to nitrate retention in freshwater systems, and specifically in restored floodplains. Additionally, no former studies quantify the rates of these microbial nitrate transformations during floods after prolonged periods of drought. To test how flood duration impacts nitrogen cycling we added 15N-enriched tracer to soil mesocosms to measure denitrification, anammox, and DNRA transformation rates. In July 2015, we extracted seven soil mesocosms from the floodplain and riverbed of the Lower Cosumnes River in the San Joaquin Basin of California. Cosumnes River water enriched with 15N-NO3- tracer was pumped into each mesocosm at a constant rate simulating flood durations of 20 h, 30 h, and 96 h. Samples were collected from the surface water, soil pore water, drain water, and sediment for measurements of NO3-, NO2-, NH4+, gas isotopes, and DNA extraction. This study aims to demonstrate the relevance of anammox and DNRA to total nitrate retention and characterize the hydrologic conditions most favorable to each pathway.