H54F-04
Development of heterogeneity in proppant distribution due to engineered and natural processes during hydraulic fracturing

Friday, 18 December 2015: 16:45
3018 (Moscone West)
Joseph Morris, Lawrence Livermore National Laboratory, Livermore, CA, United States
Abstract:
Proppant, such as sand, is injected during hydraulic fracturing to maintain fracture aperture and conductivity. Proppant performance is a complex result of fluid flow, discrete particle mechanics and geomechanical deformation. We present investigations into these phenomena at scales ranging from millimeters to meters.

Traditionally, the design goal for proppant placement is uniform distribution by using viscous carrier fluids that keep the proppant suspended and maintain conductivity over the full area of the fracture. Large volume hydraulic fracturing in shales typically use low viscosity fluids, resulting in proppant settling out from the carrier fluid. Consequently, the proppant occupies the lower portion of the fracture. In addition, many shale plays host natural fractures that take up injected carrier fluid, but may not develop sufficient aperture to accommodate proppant. We present simulations investigating natural development of heterogeneity in proppant distribution within fracture networks due to settling and network flow.

In addition to natural development of heterogeneity, the petroleum industry has sought to engineer heterogeneity to generate isolated propped portions of the fracture that maintain aperture in adjacent, open channels. We present two examples of such heterogeneous proppant placement (HPP) technologies. The first involves pulsating proppant at the wellhead and the second utilizes a homogenous composite fluid that develops heterogeneity spontaneously through hydrodynamic instabilities. We present simulation results that compare these approaches and conclude that spontaneous creation of heterogeneity has distinct geomechanical advantages. Finally, we present simulations at the scale of individual proppant particles that emphasize the complexity of dynamic instabilities and their influence upon proppant fate.

Disclaimer: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.