C43A-0794
Optical properties of Colored Dissolved Organic Matter (CDOM) on the East Siberian shelf

Thursday, 17 December 2015
Poster Hall (Moscone South)
Svetlana Pugach1,2, Irina Pipko1 and Igor Peter Semiletov3, (1)Pacific Oceanological Institute FEB RAS, Vladivostok, Russia, (2)National Research Tomsk Polytechnic University, Tomsk, Russia, (3)University of Alaska Fairbanks, Fairbanks, AK, United States
Abstract:
The Great Siberian Rivers integrate meteorological and hydrological changes in their watersheds and play a significant role in the physical and biogeochemical regime of the Arctic Ocean. Given the magnitude of Siberian Arctic dissolved organic matter (DOM) export and the uncertain extent to which it is degraded to greenhouse gases, intensified studies to better quantify and understand this large carbon pool and processes acting on it are urgently needed. The East Siberian Arctic shelf is characterized by the highest rate of coastal erosion and significant volume of the riverine discharge which derived terrigenous DOM in the Arctic Ocean. DOM plays a significant role in freshwater and marine aquatic ecosystems including its effects on nutrients and carbon cycling. The colored fraction of DOM, CDOM, directly affects the quantity and spectral quality of available light, thereby impaction both primary production and UV exposure in aquatic ecosystems. Since 2003 we measure CDOM in the East Siberian Arctic Seas (ESAS) in situ using the WETStar fluorometer which doesn’t require prefiltration of sample. Combined analysis of CDOM and DOC data obtained at near-annual basis in (2003-2011) demonstrate a high degree of correlation between these parameters. For all the measured samples taken during the ISSS cruises (2003, 2004, 2005, 2008, 2011), there is an overall linear relationship between DOC concentration, CDOM, and salinity. Here we report the spatial-time variability of river-borne DOM in the ESAS using CDOM as a proxy parameter. Higher absorption coefficients (a254), spectral slope parameter over range 275-295 nm (S275-295) and CDOM concentrations reflect the dominant contribution of terrigenous DOM. It is shown that the attenuation light coefficient in the shallow ESAS is mostly determined by riverine CDOM.