S33B-2767
Numerical Shake Prediction for Earthquake Early Warning: More Precise and Rapid Prediction even for Deviated Distribution of Ground Shaking of M6-class Earthquakes

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Mitsuyuki Hoshiba, MRI/JMA, Tsukuba, Japan and Masashi Ogiso, Meteorological Research Institute, Ibaraki, Japan
Abstract:
In many methods of the present EEW systems, hypocenter and magnitude are determined quickly, and then the strengths of ground motions are predicted using the hypocentral distance and magnitude based on a ground motion prediction equation (GMPE), which usually leads the prediction of concentric distribution. However, actual ground shaking is not always concentric, even when site amplification is corrected. At a common site, the strengths of shaking may be much different among earthquakes even when their hypocentral distances and magnitudes are almost the same. For some cases, PGA differs more than 10 times, which leads to imprecise prediction in EEW.

Recently, Numerical Shake Prediction method was proposed (Hoshiba and Aoki, 2015), in which the present ongoing wavefield of ground shaking is estimated using data assimilation technique, and then future wavefield is predicted based on physics of wave propagation. Information of hypocentral location and magnitude is not required in this method. Because future is predicted from the present condition, it is possible to address the issue of the non-concentric distribution. Once the deviated distribution is actually observed in ongoing wavefield, future distribution is predicted accordingly to be non-concentric. We will indicate examples of M6-class earthquakes occurred at central Japan, in which strengths of shaking were observed to non-concentrically distribute. We will show their predictions using Numerical Shake Prediction method.

The deviated distribution may be explained by inhomogeneous distribution of attenuation. Even without attenuation structure, it is possible to address the issue of non-concentric distribution to some extent once the deviated distribution is actually observed in ongoing wavefield. If attenuation structure is introduced, we can predict it before actual observation. The information of attenuation structure leads to more precise and rapid prediction in Numerical Shake Prediction method for EEW.