S31A-2704
TremorScope: A Tool to Image the Deep Workings of the San Andreas Fault near Cholame, CA

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Margaret Hellweg1, Roland Burgmann2, Taka'aki Taira2, Robert M Nadeau2, Douglas Scott Dreger2 and Richard M Allen2, (1)Berkeley Seismological Lab, Berkeley, CA, United States, (2)University of California Berkeley, Berkeley, CA, United States
Abstract:
Until recently, active fault zones were thought to deform via seismic slip during earthquakes in the upper, brittle portion of the crust, and by steady, aseismic shear below. However, since 2000, this view has been shaken by seismological observations of seismic tremor deep in the roots of active fault zones, including on the section of the San Andreas to the southeast of Parkfield, CA, deep (~20-30 km) beneath the nucleation zone of the great 1857 Fort Tejon earthquake. With funding from the Gordon and Betty Moore Foundation, we have improved the seismic network in the area above the tremor source by installing four new broadband/strong motion surface stations and four borehole sites with uphole accelerometers and downhole geophones, broadband and strong motion sensors. Data from all stations are telemetered in real-time. They are analysed as part of normal earthquake monitoring, and archived and distributed through the Northern California Earthquake Data Center (NCEDC). Data from the TremorScope project is improving earthquake monitoring in the region south of Parkfield, including allowing empirical Greens function finite fault analysis of moderate events in the area. Locations and characterization of tremor episodes are improved by the data recorded by TremorScope stations. For example, the rate of ambient tremor activity in the TremorScope area increased by a factor of ~8 within ~12 hours of the 2014 Napa M6.0 earthquake and remained elevated for ~ 100 days, exceeding the tremor rate increase following the 2004 Parkfield M6.0 quake despite the differences in epicentral distance (~300 km vs. ~15 km). No comparable increases in tremor rates have been observed between the Parkfield and Napa events. This suggests that the sensitivity to external stressing in the in the deep tremor zone of the TremorScope region may have increased since 2004. We also show how this network's strong motion instrumentation will provide unprecedented and exciting insights into the seismic rupture process should a great San Andreas earthquake occur during the experiment.