EP53E-08
Hydrologic regime controls pattern and architecture of woody debris in mountain streams

Friday, 18 December 2015: 15:25
2003 (Moscone West)
Laura A Hempel, Gordon Grant and Sarah Lewis, Oregon State University, Corvallis, OR, United States
Abstract:
One question that has received little attention in the literature on wood in rivers is the degree to which the pattern and architecture of woody debris accumulations reflect the hydrologic regime of those rivers. In this study we focus on how patterns of woody debris in mountain streams reflect the underlying flow regime by comparing wood loading, piece orientation, location, and jam architecture in spring- and runoff dominated streams with similar bioclimatic settings in the Cascade Range of the Pacific Northwest. A key aspect of spring-dominated streams is that flows are near constant and vary by less than a factor of 2 over the course of the year, rarely exceeding bankfull. In contrast, flow in highly variable runoff-dominated streams can vary by as much as two orders of magnitude. To compare wood accumulations in these two stream types, we took over 40 measurements for each piece of wood along four reaches in streams of similar size but different hydrologic regime.

Differences in woody debris are so great that characteristics of woody debris can actually be a useful field indicator of overall flow regime. Wood in stable, spring-fed streams is largely immobile (83%), found as a single piece (67%) or as part of an open-fabric log jam (33%), and is near perpendicular to channel, indicating little movement since emplacement. In a real sense, wood becomes part of the channel and represents the dominant structural feature in these channels, accounting for a large fraction of total flow resistance and form drag. In contrast, the majority of wood in runoff-dominated streams is mobile (83%), has stripped bark (86%), occurs in densely-packed log jams (84%), and is found parallel or sub-parallel to the channel, all indicators of frequent fluvial transport. In these systems, wood moves through the channel quickly and is a much smaller component of total resistance.

We conclude that wood patterning and mobility do reflect the degree of flow variability in a stream, and that differences in flow-dictated wood architecture control channel stability and key channel structures. Understanding how flow regimes control wood accumulations and patterns is therefore fundamental to properly interpreting the geomorphic and ecologic role of wood in streams.