H12B-06
Faunal Influences on Fracture-Induced Carbon Flux Dynamics in Dryland Soils
Monday, 14 December 2015: 11:35
3024 (Moscone West)
Keita F DeCarlo and Kelly K Caylor, Princeton University, Princeton, NJ, United States
Abstract:
Organismal activity, in addition to its role in ecological feedbacks, ha the potential to serve as instigators or enhancers of atmospheric and hydrologic fluxes via alterations in soil structural regimes. We investigated the effect of faunally-induced crack morphology on soil carbon dynamics in three dryland soil systems in central Kenya: bioturbated soils, biocompacted soils, and undisturbed soils. Carbon fluxes were characterized using a closed-system respiration chamber, with CO2 concentration differences measured using an infrared gas analyzer. Results show that faunal influenes play a divergent biomechanical role in bulk soil cracking morphology and topology: macrofauna-induced bioturbation creates shallow, large, well-connected networks relative to those from megaherbivore-induced biocompaction, with the latter showing a "memory" of past drying events through a crack layering effect. These morphologies may further drive differences in soil carbon flux: under dry conditions, bioturbated and control soils show a persistently high and low mean carbon flux, respectively - biocompacted soils suggest a diurnal trend, with daytime lows and nighttime highs comparable to the control and bioturbated soils, respectively. Overall fluxes under wet conditions are considerably higher, but also more variable, though higher mean carbon fluxes are observed in the biocompacted and bioturbated soils. Our results suggest that fracture morphology induced in biocompacted soils may enhance diffusive fluxes that are typical in undisturbed soils to levels that are as high as those from macrofaunal respiration, but that particular physical conditions in fracture morphology and topology may be necessary as a prerequisite.