A11H-0167
Production of 3D wind field near the surface using WRF and MUKLIMO

Monday, 14 December 2015
Poster Hall (Moscone South)
Lee Sukjun, Seoul National University, Seoul, South Korea
Abstract:
The extreme weather conditions become frequent and severe with global warming. To prevent and cope forest disaster like a forest fire, we need an accurate micrometeorological prediction system for mountainous regions. This study addressed the forest fires occurred at Bonghwa and Gangneung in March, 2013. We constructed and optimized the prediction system that were required to interpret and simulate the forest micrometeorology. At first, we examined WRF physical sensitivity. Subsequently, KMA AWS observation data were assimilated using three-dimensional variation data assimilation method. The effectiveness of the assimilation was examined by using AWS observations enhanced with the Forest Research Institute observations. Finally, The 100 meters spatial resolution wind data were obtained by using the MUKLIMO for the given wind vector from WRF.